Statistical Consulting Group

San Diego State University

Menu

Skip to content
  • Center
    • About
    • Stat 795
  • Services
  • Staff
  • Appointments
  • Tutorials
    • Hypothesis Testing
    • Power and Sample Size
      • Calculators
        • Normal Data Calc
        • Proportions
        • Two Sample Normal
        • Two Sample Proportions
        • Survival
      • Normal Data
      • Proportions
      • Two-sample Tests
    • Linear Regression
      • Simple Linear Regression
        • Simple Linear Regression (R)
        • Simple Linear Regression (SAS)
      • Multiple Linear Regression
        • Multiple Linear Regression (R)
        • Multiple Linear Regression (SAS)
      • Logistic Regression
        • Logistic Regression (R)
      • Model Selection Schema
    • Data Mining and Machine Learning
      • Classification Systems
      • Decision Trees
        • Classification Trees (R)
      • Artificial Neural Network
        • Neural Networks (R)
      • Bagging
        • Random Forests (R)
    • Applied R
      • R Environment
      • R – Variables
      • R – Loops
      • R – Functions
      • Dataset: Adult (R)
      • Pretty Graphs with ggplot2 (R)
      • Rstudio, Sweave, and LaTeX
    • Applied SAS
      • Proc SQL – SAS
      • Data Processing in SAS
      • Tutorial Papers Library (SAS)
  • Data Sources

Tutorial Papers Library (SAS)

  • Quick Results with PROC SQL (WUSS 2013)
  • What’s Hot, What’s Not – Skills for SAS® Professionals (SAS Talks 2013)
  • SAS® Programming Tips, Tricks and Techniques for Programmers (V1, 30-minutes)
  • Point and Click Programming Using SAS® Enterprise Guide® (NESUG 2013)
  • Hands-On SAS® Macro Programming Tips and Techniques (SCSUG 2013)
  • Google® Search Tips and Techniques for SAS® and JMP® Users

Spatial/Spatio-Temporal Statistics

  • Everything in Its Place: Efficient Geostatistical Analysis with SAS/STAT® Spatial Procedures – Alexander Kolovos: Presentation to SDSU SAS Club, 2014
This entry was posted in SAS, Tutorials and tagged SAS on November 21, 2013 by Peter.

Post navigation

← Logistic Regression Simple Linear Regression (SAS) →

Tags

  • Classification
  • Conference
  • Data Cleaning
  • Data Mining
  • Data Preparation
  • Ensemble Methods
  • Error Types
  • ggplot2
  • graph
  • LaTeX
  • Logistic Regression
  • Machine Learning
  • MLR
  • Model Selection
  • Nested Data
  • Neural Networks
  • News
  • Performance
  • Power
  • Programming Concepts
  • R
  • Random Forests
  • Regression
  • Rstudio
  • Sample Size
  • SAS
  • SDASA
  • SLR
  • SQL
  • Sweave
  • Theory
  • Trees

News

  • Workshop on knitr, LaTeX and R

    Workshop on knitr, LaTeX and R

    April 30, 2014
  • R 3.1.0 Released

    R 3.1.0 Released

    April 15, 2014
  • New version of R released

    New version of R released

    March 10, 2014
  • SDASA One-Day Conference Oct. 16th

    SDASA One-Day Conference Oct. 16th

    October 10, 2013
Proudly powered by WordPress