Reproducible Research

knitr, LaTeX and R

Statistical Consulting Group

San Diego State University
What is R?

- Statistical Programming Environment
- Interpreted Language
- (Comparatively) easy to work/prototype in
- (can be) slower than other programming languages
- Amazing Graphic Capabilities
- Incredible power through packages
What is LaTeX?

- **\TeX** is a typesetting environment
 - Developed by Donald Knuth to typeset books he was writing
- **\LaTeX** is an extension to that environment, to
 - Automate tedious tasks of writing a paper
 - Generate Professional looking output
- Produces clean text with proper kerning
- Consistent and (comparatively) easy writing of mathematical formulae
What is knitr?

- Replacement for Sweave
- Runs \texttt{R} Code, encapsulates results and prepares for typesetting in \LaTeX
- Automatically formats results to look good
Reproducible Research

- Reproducibility is fundamental to good science. The Scientific method hinges on the reproducibility of results.
- Use of knitr to automate final document preparation down to a single button (that will produce the same output regardless of who presses it) contributes to this idea of reproducible research.
- Advantages to you: You don’t have to copy and paste results from R into Word, or Powerpoint. If you find some bug or decide to do something different, a small change in the code and recompiling the document (1 button) averts the crisis.
Downloads

R http://www.r-project.org/
Rstudio http://www.rstudio.com/
MikTeX http://miktex.org/download
How to Use

- Install all three downloads
- Install knitr: install.packages('knitr')
- Set Options > Sweave > Weave 'Rnw' Files using knitr
- Rstudio allows the use of Projects
 - Keep contained everything relating to a specific analysis
 - One Project per Assignment
- New → R Sweave Document
A Basic Document

- **Preamble**
 - Document Class (*article, beamer*)
 - Package Inclusions (*extend functionality*)
 - Define New Commands
 - Author/Title Declaration

- **Document**
 - Title?
 - Abstract?
 - Table of Contents?
 - Sections
 - Subsections... and deeper
 - References
\documentclass[10pt,letterpaper]{article}
\usepackage[margin=1in]{geometry}
\usepackage{amsmath}
\usepackage{amssymb}
\title{The New Document}
\date{}
\author{Peter Trubey}
\newcommand{\iid}{\stackrel{iid}{\sim}}
\newcommand{\eqd}{\stackrel{d}{=}}
\begin{document}
\maketitle
\abstract{An abstract goes here}
\section{In the Beginning}
Some Stuff here
\subsection{things happened}
More stuff here
\subsubsection{And more things happened}
3 levels of sections? The horrors.
\end{document}
Environments

- An environment allows you to treat something differently than free text
- There are various types of environments
 - **Math** - For displaying single and multi-line mathematical formulae
 - *equation* - Single line mathematical formulae
 - *align* - Multi-line formulae - Use & to align
 - **Floats**
 - *figure* - For displaying Images
 - *table* - For displaying Tables
 - *verbatim* - For displaying really ugly code
- With *float* package, you can also make custom environments to suit your needs.
 - E.g., psuedocode to describe an algorithm.
Math Environments

- **Equation**

\[
 z_i = \frac{\pi \phi_{\theta_1}(x_i)}{\pi \phi_{\theta_1}(x_i) + (1 - \pi)\phi_{\theta_2}(x_i)}
\]

- **Align**

\[
 \mu_1 = \frac{\sum_{i=1}^{n} z_i x_i}{\sum_{i=1}^{n} z_i}
\]

\[
 \mu_2 = \frac{\sum_{i=1}^{n} (1 - z_i) x_i}{\sum_{i=1}^{n} (1 - z_i)}
\]

\[
 \sigma^2 = \frac{\sum_{i=1}^{n} z_i (x_i - \mu_1)^2 + (1 - z_i)(x_i - \mu_2)^2}{n}
\]

\[
 \pi = \frac{\sum_{i=1}^{n} z_i}{n}
\]
Math Environments : equation

\begin{equation*}
 z_i = \frac{\pi \phi_{\theta_1}(x_i)}{\pi \phi_{\theta_1}(x_i) + (1 - \pi) \phi_{\theta_2}(x_i)}
\end{equation*}

\[z_i = \frac{\pi \phi_{\theta_1}(x_i)}{\pi \phi_{\theta_1}(x_i) + (1 - \pi) \phi_{\theta_2}(x_i)} \]
\begin{align*}
\mu_1 &= \frac{\sum_{i=1}^{n} z_i x_i}{\sum_{i=1}^{n} z_i} \\
\mu_2 &= \frac{\sum_{i=1}^{n} (1-z_i) x_i}{\sum_{i=1}^{n} (1-z_i)} \\
\sigma^2 &= \frac{\sum_{i=1}^{n} z_i (x_i - \mu_1)^2 + (1-z_i)(x_i - \mu_2)^2}{n} \\
\pi &= \frac{\sum_{i=1}^{n} z_i}{n}
\end{align*}
A Float Environment

A figure environment, specifically

\begin{figure}[h]
\centering
\caption{In this figure environment, there is a fig!}
\includegraphics[width=.8\textwidth]{fig.png}
\label{fig:fig}
\end{figure}

- Figures automatically take number labels
- Use positioning flag to control where the figure appears
- declare reference label after caption!
- R code chunks can be declared inside figures
Table Environments

- **table**
 - A wrapper for your table
 - Allows you to caption, label, and float the table

- **tabular**
 - The actual table
 - various types of tabular for different things
 - **tabular**
 - **tabularx** - evenly spaced columns
 - **tabulary** - even whitespace around column contents
A LaTeX Table

\begin{table}
\begin{tabular}{lllll}
X & Y & Z & W & T \\
1 & 3 & 1.386294361 & 1.921812056 & 1.243283885 \\
2 & 4 & 1.791759469 & 3.210401996 & 1.475207592 \\
3 & 5 & 2.079441542 & 4.324077125 & 1.629162771 \\
4 & 6 & 2.302585093 & 5.30189811 & 1.743721514 \\
\end{tabular}
\end{table}
R in LaTeX

We can dynamically run R code in LaTeX using Sweave or knitr. We package the R code in chunks. For instance, we can run analysis in LaTeX.

```r
fit1 = lm(dist ~ speed, data = cars)
fit2 = lm(dist ~ speed + I(speed^2), data = cars)
anova(fit1, fit2)
```

```r
## Analysis of Variance Table
##
## Model 1: dist ~ speed
## Model 2: dist ~ speed + I(speed^2)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 48 11354
## 2 47 10825 1 529 2.3 0.14
```

We can plot these results as well. If contained within a chunk is the code to generate a plot, then knitr will generate the plot.
Certain packages make our lives easier. For instances, xtable allows high quality automatic table generation.

```r
library(xtable)
print(xtable(anova(fit1, fit2)))
```

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48</td>
<td></td>
<td>11353.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>47</td>
<td>1</td>
<td>10824.72</td>
<td>528.81</td>
<td>0.1364</td>
</tr>
</tbody>
</table>
At the end of the document, we can place the bibliography. If you set it to, \LaTeX\ will automatically generate a bibliography from sources you cite.

\begin{verbatim}
\bibliographystyle{plain}
\bibliography{refs}
\end{verbatim}

- \textit{\texttt{\bibliographystyle}} determines what fields from the reference file are displayed
- \textit{\texttt{\bibliography}} names the reference file (\texttt{.bib} file extension expected)
A Reference File

The Reference file allows you to define referenced works. It is filled with entries such as:

```latex
@article{blackholes,
    author="Rabbert Klein",
    title="Black Holes and Their Relation to Hiding Eggs",
    journal="Theoretical Easter Physics",
    publisher="Eggs Ltd.",
    year="2010",
    note="(to appear)"
}
```

- The document format decides the standard fields. You won’t always be able to fill every relevant field.
- There are many tools online that help to manage the bibliography.
- Of all entries in the .bib file, BibTeX will only put in the bibliography those entries who are cited in the paper.
Some Friendly Advice...

- Make sure all R code runs properly first, before putting it in document.
- Isolate all running code into an R script file (.R), and source it in first chunk.
 - Then cache the chunk. You won’t have to run the code again, making document compiling faster.
- Make all subsequent chunks output only.
 - store all outputs in variables, so you need only print the variable to get the output.
- Don’t be afraid to define new commands. That’s what they’re there for.
 - Math equations are tedious to type. Less so with custom commands.
- Asterisks change the standard behavior of many environments/items
 - Math Environments don’t get line numbers
 - sections don’t show up in TOC, don’t get numbers
- Easy formatting of LaTeX Tables can be accomplished with online websites: http://truben.no/latex/table/