
A presentation by

Kirk Paul Lafler

SAS® Programming

Tips, Tricks,

and Techniques

Copyright © 2001-2012 by
Kirk Paul Lafler, Software Intelligence Corporation

 All rights reserved.

SAS is the registered trademark of SAS Institute Inc., Cary, NC, USA.

All other company and product names mentioned are used for identification purposes

only and may be trademarks of their respective owners.

Presentation Objectives - Explore

Useful SAS

System

Options

Interesting

PROC SQL

Options

A User-

defined

Function

using

PROC FCMP

Integrity

Constraints

for Tables

A User-

defined

Dictionary

Table and

SASHELP

View Tool

Example Datasets / Tables

Movies

Actors

Exploring

SAS® System

Options

SOURCE versus SOURCE2
Primary Source Statements:

OPTIONS SOURCE2;
%INCLUDE ‘c:\Workshops\LogControlOptions.sas’;
PROC PRINT DATA=MOVIES NOOBS;
 VAR TITLE RATING CATEGORY;
RUN;

Secondary Source Statements (Included Code):

OPTIONS MSGLEVEL=I ;
/* DISPLAY SORT, MERGE PROCESSING, AND INDEX USAGE */;

SOURCE versus SOURCE2 Log Results

SAS Log Results:

OPTIONS SOURCE2;
%INCLUDE 'c:\Workshops\LogControlOptions.sas';

NOTE: %INCLUDE (level 1) file
c:\Workshops\LogControlOptions.sas is file
c:\Workshops\LogControlOptions.sas.
+OPTIONS MSGLEVEL=I
+/* DISPLAY SORT, MERGE PROCESSING, AND INDEX USAGE */
+;
NOTE: %INCLUDE (level 1) ending.

PROC PRINT DATA=MOVIES NOOBS;
 VAR TITLE RATING CATEGORY;
RUN;

Exploring

PROC SQL

Options

SQL Join Algorithms
• Nested Loop (aka “Brute” force) join algorithm

• Sort-merge join algorithm

• Index join algorithm

• Hash join algorithm

Influencing the SQL Optimizer

Specifying MAGIC=101
PROC SQL MAGIC=101;
 SELECT *
 FROM MOVIES, ACTORS
 WHERE MOVIES.TITLE = ACTORS.TITLE;
QUIT;

SAS Log Results
PROC SQL MAGIC=101;
 SELECT *
 FROM MOVIES, ACTORS
 WHERE MOVIES.TITLE = ACTORS.TITLE;

NOTE: PROC SQL planner chooses sequential loop join.

QUIT;

Specifying MAGIC=102
PROC SQL MAGIC=102;
 SELECT *
 FROM MOVIES, ACTORS
 WHERE MOVIES.TITLE = ACTORS.TITLE;
QUIT;

SAS Log Results
PROC SQL MAGIC=102;
 SELECT *
 FROM MOVIES, ACTORS
 WHERE MOVIES.TITLE = ACTORS.TITLE;

NOTE: PROC SQL planner chooses merge join.

QUIT;

Specifying MAGIC=103
PROC SQL MAGIC=103;
 SELECT *
 FROM MOVIES, ACTORS
 WHERE MOVIES.TITLE = ACTORS.TITLE;
QUIT;

SAS Log Results
PROC SQL MAGIC=103;
 SELECT *
 FROM MOVIES, ACTORS
 WHERE MOVIES.TITLE = ACTORS.TITLE;

NOTE: PROC SQL planner chooses merge join.
NOTE: A merge join has been transformed to a hash join.

QUIT;

The IDXWHERE= dataset option can be specified to
influence the SQL optimizer to use the most efficient
index available (if one exists) to execute a query.

Specifying IDXWHERE=Yes

Specifying IDXWHERE=Yes
OPTIONS MSGLEVEL=I;

PROC SQL;
 SELECT *
 FROM MOVIES(IDXWHERE=Yes), ACTORS
 WHERE MOVIES.TITLE = ACTORS.TITLE;
QUIT;

SAS Log Results
PROC SQL;
 SELECT *
 FROM MOVIES(IDXWHERE=Yes), ACTORS
 WHERE MOVIES.TITLE = ACTORS.TITLE;

INFO: Index Rating selected for WHERE clause optimization.

QUIT;

Exploring a User-

defined Function

using PROC FCMP

PROC FCMP Advantages

User-Defined functions created with the FCMP
procedure provide specific advantages:

 Code can be easier to read, write and modify

 Code is modular and callable

 Code is independent and not affected by its
implementation

 Code is reusable by any program that has access to the
dataset where the function is stored

User-defined Function (Part 1)
/* Constructing a User Defined Function in FCMP */
proc fcmp outlib=sasuser.myfunctions.examples ;
 function Age_of_Movie_function(year) ;
 if year NE . then do ;
 Age_of_Movie = year(today()) – year ;
 end ;
 return(Age_of_Movie);
 endsub ;
quit ;

User-defined Function (Part 2)
options cmplib=sasuser.myfunctions ;

/* Call the User Defined Function created in FCMP */
data Age_of_Movie ;
 set mydata.movies ;
 Age_of_Movie = Age_of_Movie_function(year) ;
 put Year= Age_of_Movie= ;
run ;

User-defined Function (Log Results)

Exploring Integrity

Constraints for

Tables

Methods of Building Integrity

• Application programs – Older / less reliable

• Database table environment – Newer / more reliable

 PROC DATASETS

 PROC SQL

Data integrity problems such as missing information,
duplicate values, and invalid data values can affect user
confidence in a database environment. The objective is
to establish rules in the database table(s) to safeguard
and protect data.

Column and Table Constraints
Data integrity is maintained by assigning column and
table constraints. Modifications made through update
and delete operations can have referential integrity
constraints built into the database environment.

 Column and Table Constraints

 NOT NULL

 UNIQUE

 CHECK

NOT NULL Constraint

PROC SQL;

 CREATE TABLE work.RENTAL_INFO

 (TITLE CHAR(30) NOT NULL,

 RENTAL_AMT NUM FORMAT=DOLLAR6.2);

QUIT;

To prevent null values from appearing in any row of a
table for a specified column, a NOT NULL constraint can
be coded.

UNIQUE Constraint

PROC SQL;

 CREATE TABLE work.RENTAL_INFO

 (TITLE CHAR(30) UNIQUE,

 RENTAL_AMT NUM FORMAT=DOLLAR6.2);

QUIT;

The UNIQUE constraint prevents rows containing
duplicate values for a specified column from being
added to a table.

CHECK Constraint

PROC SQL;

 ALTER TABLE MOVIES

 ADD CONSTRAINT CHECK_RATING

 CHECK (RATING IN (‘G’, ‘PG’, ‘PG-13’, ‘R’));

QUIT;

A CHECK constraint can be specified to assign specific
rules that a column must adhere to.

Exploring a User-

defined Tool

using Dictionary

Tables

Dictionary Tables / SASHELP Views

• SAS collects information about a session
• Session information is captured as read-only content
• Tables are accessible using PROC SQL
 Specify table in FROM clause of a SELECT
 DICTIONARY libref is automatically assigned

• SASHELP Views are accessed in a DATA step or with
 any of your favorite PROCs

Viewing Dictionary Tables / Views

• # of DICTIONARY Tables/Views:
 22 in SAS 9.1
 29 in SAS 9.2
 30 in SAS 9.3

Cross-reference Listing – PROC PRINT

PROC PRINT DATA=SASHELP.VCOLUMN NOOBS;
 VAR LIBNAME MEMNAME NAME TYPE LENGTH;
 WHERE UPCASE(LIBNAME)=UPCASE(“SASUSER") AND
 UPCASE(NAME)=UPCASE("TITLE");
RUN;

Library Column Column
Name Member Name Column Name Type Length
SASUSER ACTORS Title char 30
SASUSER MOVIES Title char 30

Cross-reference listing
for the column TITLE

Cross-reference Listing – PROC PRINT

%MACRO CROSSREF(LIB, COLNAME);
 PROC PRINT DATA=SASHELP.VCOLUMN NOOBS;
 VAR LIBNAME MEMNAME NAME TYPE LENGTH;
 WHERE UPCASE(LIBNAME)=UPCASE("&LIB") AND
 UPCASE(NAME)=UPCASE("&COLNAME");
 RUN;
%MEND CROSSREF;
%CROSSREF(SASUSER,TITLE);

Cross-reference Listing – PROC PRINT

PROC PRINT DATA=SASHELP.VCOLUMN NOOBS;
 VAR LIBNAME MEMNAME NAME TYPE LENGTH;
 WHERE UPCASE(LIBNAME)="SASUSER" AND
 UPCASE(NAME)="TITLE";
RUN;

Library Column Column
Name Member Name Column Name Type Length
SASUSER ACTORS Title char 30
SASUSER MOVIES Title char 30

Cross-reference listing
for the column TITLE

Conclusion

Useful SAS

System

Options
PROC SQL

Options

User-defined

Function

using PROC

FCMP

Integrity

Constraints

for Tables

User-defined

Tool using

Dictionary

Tables

A presentation by

Kirk Paul Lafler
KirkLafler@cs.com

@sasNerd

Thank You for Attending!

Questions?

